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Figure 5 Log time-inverse temperature plot. 

with 

b C = c and T log t = z 

and one obtains 

1ogtB = l o g a + c T + b z .  

The constant log a, is found from the regression 
analysis as well as the partial coefficients c and b, 
where the Larson-Miller constant C is given by 

c 
C ~_. - - .  

b 

Using the values given in Table I, a C value of 12.3 
was obtained using a Wang 2200 Series Program 
which correlates extremely well with the graphical 
result. 

The constant C can also be determined using 
a technique proposed by Larson and Miller [8], 
namely a log time-inverse temperature plot. This 
method has been used by Buchanan and Tarshis 
[9]. Fig. 5 shows such a plot which, due to the 
lack of data, can only poorly indicate that C lies 

between 12 and 13. An alternative method 
proposed by Woodford [10] of solving simul- 
taneous equations to give a constant parameter 
value at stresses where results at two or more test 
temperatures are available, gives variable values for 
C. 

In summary, this study shows that the C 
constant has to be adjusted to the material in 
question and that in this case a modification of 
C ~ 12 reasonably correlates the data. 
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Hot-pressing diagrams for fc c meta/s growth, and as the different rates are functions of  
a/R, the boundaries of  these fields are obtained by 

Ashby [1] has constructed sintering diagrams (log equating pairs of  rate equations and solving for 
(a/R) versus T/Tm) which identify, at a given par- neck size as a function of temperature. The aim of 
ticle size R, neck size a, and reduced temperature this communication is to extend such diagrams to 
T/Tm, the dominant mechanism. As various mech- hot-pressing. 
anisms contribute simultaneously to the neck Let us first return to sintering diagrams. The 
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generally accepted equations for neck growth of 
two spheres are the following. 

For surface diffusion from surface sources, the 
neck radius a, at time t is given [2, 3] by 

a 7 56~,~2 
R 3 - k T  6sDst' (1) 

where 5 s is the thickness of the high diffusivity 
surface layer (about one interatomicspacing), D s 
the surface self-diffusion coefficient, 7 the surface 
energy, and ~2 the atomic volume. 

For grain-boundary diffusion from the grain- 
boundary sources [4, 5] one has 

a 6 967~2 
-- 8BDBt, (2) 

R 2 k T  

where 6 ~ is the grain-boundary thickness, and D B 
the grain-boundary diffusion coefficient. 

For lattice diffusion from surface sources [2] 
one has 

a s 407~2 
- O L t ,  (3) 

R 2 k T  

and for lattice diffusion from the grain-boundary 
sources [6, 7] 

a s 807~2 
R 2 - kT  DLt  (4) 

where D L is the lattice diffusion coefficient. 
Owing to the uncertainty on the exact value 

of the fillet radius r, the numerical constants in 
Equations 1 to 4 must be taken as approximate. 
For surface diffusion, for example, Rockland [3] 
proposes 34 instead of 56, Wilson and Shewmon 
[6] and Ashby [1] propose 112, and Nichols and 
Mullins [8] obtain 28. Moreover, for lattice dif- 
fusion from grain-boundary an alternative solution 

corresponding to another diffusion length was 
proposed by Coble [4] : 

a 4 32792 
- DLt.  

R k T  

We will follow Ashby [ 1 ] in the choice of Equation 
4. 

Ashby [1] used elaborate curvature difference 
for diffusion, but for stage 1 and 2 sintering, the 
following approximation appears to be sufficient. 
By merely using the derivatives of Equations 1, 2 
and 4, the rate ratios are 

~ii, 3RDL ( R )  
dB -- 26BDB (5) 

a s - -  ~sDs (6) 

=  sD, " ( 7 )  

As diffusion coefficients are thermally acti- 
vated, it is more convenient to use Arrhenius plots 
(log (a/R) versus TraIT) for the boundaries 
separation the various field will be straight lines. 
Furthermore, as activation energies are function 
of the melting point alone, it is possible to give 
master curves valid for any f c c  metal. Some 
generally accepted values for pre-exponential 
factors and activation energies for f c c  metals 
are the following: 

for volume diffusion 

DLo = 0.5 cm 2 s e c  -1 

QL = 17-5RTm; 

for surface diffusion [9] 

Dso = 740cm 2 sec -1 

Qs = 15RTm 

Dso = 1.410 -2cm 2sec -1 

O~ = 6.5RTm 

T > O . 7 5 T m  

T < 0 . 7 5 T m ;  

for boundary diffusion, DB depends on struc- 
ture and orientation of the boundary,being related 
to the grain-boundary energy by the Borisov 
formula [10, l l ] ,  but the following mean value 
can be used [12] 

DBo = 0.3 cm 2 sec -1 

QB = 9 R Tm . 

Fig. 1 is such a map constructed for four radii, 
with 5s = 3 • 10 -8 cm and 6B = 5 x 10 -8 cm. One 
can see that surface diffusion is dominant at low 
temperature and that grain-boundary diffusion 
disappears when the radius R increases. The differ- 
ent picture given by Ashby for copper and silver 
arises from the high values of Qs he used: respect- 
ively 18RT m and 25.5RT m whatever the tern- 
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Figure 1 Sintering diagram for fc c spheres. 
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perature. As seen from Equation 6 the boundary 
between surface diffusion and grain-boundary 
diffusion is independent of the radius R,  so that 
the triple point (in fact, a small triangle) moves 
along the curve when R varies. The field corre- 
sponding to dominant grain boundary disappears 
for R > 400gm or T < 0.6 T m ; that corresponding 
to surface diffusion decreases in favour of volume 
diffusion when R increases. This influence of the 
radius is in conformity with Herring's scaling law 
[13] : if R2 = XR, ,  the time required to produce 
geometrically similar conflgurational changes is 
given by zXt2 = X4Atl  for surface diffusion, and 
by At2 = X3At, for volume diffusion. So, at a 
given temperature and a/R, the volume diffusion 
becomes predominant as R increases. Notice that 
the aiR values corresponding to elastic adhesion 
depend on the nature of R metal and do not 
appear on the figure. Large values of radius R 
correspond to the fact that the author has in mind 
adhesion of rough solids at high temperature. 

As in Herring-Nabarro and Coble creep, the 
applied pressure increases the vacancy deficit at 

the grain boundary and enhances the mass transfer 
from the grain boundary to the neck (by boundary 
diffusion, or lattice diffusion). When a force P is 
applied to two spheres, the applied pressure at the 
grain boundary is o=P/Ora2), and the pressure 
difference between the grain boundary and the 
neck subsurface increases from 7/r to 7It + a. So, 
as suggested by Coble [14], 7 in Equations 2 and 
4 must be expanded into 3' + or = 7 + P/(4~R). 
This corrective term may be important in hot- 
pressing; assuming the particle packing to be 
simple cubic, the relation between the force P and 
the mean pressure Pa applied to the powder is 
P = 4R2Pa; hence the term 3" = P/(4~R) = PaR/Tr 
[14] may be as high as 1033 '. Equations 5, 6 and 7 
become: 

dL 3RDL (a tKL 

a-AB 28BDB (R ) (9) 
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Figure 2 Hot pressing diagram for f c c spheres (radius 10 urn). The hot hardness limits are for copper (7 = 1720 mJ m-2 ). 

dLas 3RDL (10) 

with 
? 

K B = 1 +  7- 

27'  
KL = I+---. 

37 

Figs. 2 and 3 show that  hot-pressing dramati- 
cally increases the field (B) corresponding to grain- 
boundary  diffusion. However, the pressure at the 
boundary  cannot exceed the hardness value H. So, 
for higher stresses, stage 1 does not  differ from a 
mutual  hot  hardness, hence, hot-pressing is by  
power law creep. We could tentatively use hot-  
hardness equations [16, I7] to describe the in- 
crease of  neck radius with t ime,  bu t  the problem 
of  the activation energies for hot  hardness is still 

of  the creep field (H)  in the hot-pressing diagram, 

it is more direct to use hardness experimental  
values, as given by  Lozinskii [18] (Vickers dia- 
mond,  load 10 N, contact  t ime i min). So, a very 
approximative value of  air first reached by plastic 
flow is , , _~ 

a (~-~H)2 = [4Pal~ = (47',1: = ~-~] 1HR/" (11) 

The case o f  copper is described in Figs. 2 and 3. 
The value 7 = 1720 mJ m -2 was used, as in Ashby's  

[1] paper. As T' increases, the field corresponding 
to plastic flow ( H )  increases and the field (S) 
corresponding to surface diffusion may disappear. 
Notice that  7'  is proport ional  to R for a given 
pressure Pa, so that  the "hardness curves" of  Fig. 2 
that  can be superimposed on those o f  Fig. 3 corre- 
spond to the same pressure Pa on a powder.  (The 

open. For  a very rough estimate of ' the  positions represented pressures, 0.16 to 16MNm -2, are 

*Even the action of molecular forces under zero load is not negligible. Using the apparent Hertz load P1 = 6~rwR [15], 
_ 5 where w is the work of adhesion, one has 7' = 3w[2. Taking the approximation w = 27 -- 7B -- "~7, where 3'B is the 

grain-boundary energy, 7' = 2.57. But for small radii, one can think that this stress is first relaxed by plastic flow and 
does not act in subsequent diffusion processes. 
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Figure 3Hot pressing diagram for fcc spheres (radius 100/am). The hot hardness limits are for copper 
(? = 1720mJm-~). 

moderate pressures for hot-pressing.) Recall more- 

over that the boundary B -  S is independent of 
the radius. 

The construction of such diagrams is useful to 
understand the mechanisms of hot-pressing or 

adhesion of rough surfaces at high temperature. 
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